Graduate Syllabus MTH601M/D

Topic/Subtopic	Learning Strategies/ Activities	Week/Meeting/ Hours
2. Logical Operators	Lecture	
Tautology, Contradiction and Contingencies	Class Discussions	
4. Tautological Implication and Equivalence	Problem Set	
5. Rules of Replacement		
B. Arguments		5 Hours
 Valid and Invalid Arguments 		
2. Rules of Inference		
3. Rule of Conditional Proof		
4. Rule of Indirect Proof		
C. Quantification Theory		6 Hours
Propositional Functions		
2. Quantification Identities		
3. Quantification Rules		
4. Valid Arguments		
D. Methods of Proof		5 Hours
II. SET THEORY	·	
A. Sets, Functions and Relations		12 Hours
1. The Concept of Set		
2. Some Basic Notations and Definitions	Lecture	
3. Subsets, Equality of Sets, Empty Set	Class Discussions	
4. Algebra of Sets	Problem Set	
5. Special Sets		
6. Ordered Pairs		
7. Cartesian Products, Relations		
8. Functions (or Mappings)		
9. Equivalence Relations and Partitions		

B. Finite and Infinite Sets

- 1. Defi**sitable of Scoti** Suscinee as Some e 3.92 Tm 2.6435821155.00129(s)2.7131116
 - 4. SatieSinitiesSeIndi3.92 Tm .07055(c)-2.64358(t)0.356603(s)2.356603(o)-7(n)-7(s)154()-32-18.0348-11.52 Td [4)-7.001660
 - 6. OonuntillesSets
 - 6. GiinivesSeti
 - 5.

2 aapascasio/2015

Graduate Syllabus MTH601M/D

•	Average of Long Exams	50%
•	Final Exam	30%
•	Problem Sets	20%

SOURCES

• Bloch, Ethan. Proofs and Fundametals A First Course in Abstract Mathematics, Springer London, 2011.

- Chartrand, Gary. Mathematical proofs: a transition to advanced mathematics, Boston: Addison Wesley, 2003.
- Copi, Irving. *Introduction to Logic*

3 aapascasio/2015